Wednesday, 30 November 2016

A review of the GPS Origins test: four ethnicities and four reports

I wrote about the GPS Origins test from DNA Diagnostics Center back in August this year when the test was first launched. There was recently a special offer via Geneabloggers to upload your raw data and receive an interpretation for $29, a big saving on the usual transfer price of $79. I thought I would it give it a try out of curiosity. As a comparison three other people with different ancestries have also shared their reports with me and given permission for me to use them on this blog.

First of all let's have a look at what the GPS Origins test claims to offer. Here are the descriptions from the how it works page:



The GPS Origins report is split into two parts. In the first section you are provided with your gene pool percentages. Here is the explanation of gene pools from the Understanding Your Results page:

The second part of the test provides two migration stories for each customer. Here is the explanation from the Understanding Your Results page:

There is further information about the test on the FAQs page:


The company makes the following claims with regards to the accuracy of the test:


Now let's move on to look at some actual results, starting with my own GPS Origins test.

Debbie Kennett's GPS Origins results
I've done a lot of research on my family tree over the last 15 years. All my known ancestors within the last 500 years are from Britain and Ireland. I have one great-great-great-grandmother who was born in Ireland and one great-great-great-grandfather who was born in Scotland. All my remaining ancestors were born in England and are predominantly from the south and west of the country. I've previously tested with AncestryDNA, 23andMe and Family Tree DNA. My admixture results from these three companies are fairly typical for someone with British ancestry. Each company uses different reference populations and therefore produces different results, but my ancestry comes out at between 41% and 58% British and Irish with the balance made up from a mixture of other European populations. You can see my full admixture results from all three companies here.

For the GPS Origins test I uploaded my raw data from AncestryDNA (v1). Here are my gene pool percentages:

# 1 Fennoscandia 19.8%
Origin: Peaks in the Iceland and Norway and declines in Finland, England, and France

# 2 Western Siberia 12.9%
Origin: Peaks in Krasnoyarsk Krai and declines towards east Russia

# 3 Sardinia 12.4%
Origin: Peaks in Sardinia and declines in weaker [sic] in Italy, Greece, Albania, and The Balkans

# 4 Orkney Islands 11.8%
Origin: Peaks in the Orkney islands and declines in England, France, Germany, Belarus, and Poland

# 5 Southern France 11.3%
Origin: Peaks in south France and declines in north France, England, Orkney islands, and Scandinavia

# 6 Basque Country 11.2%
Origin: Peaks in France and Spain Basque regions and declines in Spain, France, and Germany

# 7 Southeastern India 9.1%
Origin: Endemic to south eastern india with residues in Pakistan

# 8 Tuva 6%
Origin: Peaks in south Siberia (Russians: Tuvinian) and declines in North Mongolia

# 9 Northern India 4%
Origin: Peaks in North India (Dharkars, Kanjars) and declines in Pakistan

# 10 Western South America 1.1%
Origin: Peaks in Peru, Mexico, and North America and declines in Eastern Russia

# 11 Central America 0.2%
Origin: Peaks in Mexico and Central America with residues in Peru

# 12 Northwestern Africa 0.2%
Origin: Peaks in Algeria and declines in Morocco and Tunisia

In the second part of the test I am given a map showing my two migration routes with accompanying migration stories.


You can see an interactive version of my migration routes here. You can view a PDF file with my full GPS Origins report here.

For the blue migration route I am told that my ancestors came from around Croatia prior to 211 AD. They then moved to Ireland at some point before 211 AD and moved to England between 211 AD and 1950 AD. According to my red migration route my ancestors came from Russia prior to 659 AD and arrived in north-western Russia between 659 AD and 1366 AD.

Ann Turner's GPS Origins results
The next report has been shared with me by Ann Turner. Ann's known ancestry is 3/16 German and 1/16 Irish from the early 1800s. The remainder is colonial American, and presumably English. Ann has also tested at 23andMe (v2 and V4), AncestryDNA and Family Tree DNA. Here are her 23andMe results at the speculative setting:


At AncestryDNA Ann's results are: Europe 98% and West Asia 1%. Europe is broken down as follows: Scandinavia 50%, Europe West 15%, Iberian Peninsula 12%, Ireland 12%, Great Britain 6%, trace regions 3%.

With Family Tree DNA's Family Finder test Ann's MyOrigins results are: European 97%, Central South Asia 2%. Europe is broken down into: Western and Central Europe 44%, Scandinavia 35%, British Isles 16%, Southern Europe 1%.

Ann uploaded her AncestryDNA data (v1) to GPS Origins. Here are Ann's gene pools:

# 1 Fennoscandia 22%
Origin: Peaks in the Iceland and Norway and declines in Finland, England, and France

# 2 Southern France 15.5%
Origin: Peaks in south France and declines in north France, England, Orkney islands, and Scandinavia

# 3 Western Siberia 10.9%
Origin: Peaks in Krasnoyarsk Krai and declines towards east Russia

# 4 Southeastern India 10.7%
Origin: Endemic to south eastern india with residues in Pakistan

# 5 Orkney Islands 10.6%
Origin: Peaks in the Orkney islands and declines in England, France, Germany, Belarus, and Poland

# 6 Basque Country 10%
Origin: Peaks in France and Spain Basque regions and declines in Spain, France, and Germany

# 7 Sardinia 9.3%
Origin: Peaks in Sardinia and declines in weaker in Italy, Greece, Albania, and The Balkans

# 8 Tuva 7%
Origin: Peaks in south Siberia (Russians: Tuvinian) and declines in North Mongolia

# 9 Northern India 2.5%
Origin: Peaks in North India (Dharkars, Kanjars) and declines in Pakistan

# 10 The Southern Levant 1.4%
Origin: This gene pool is localized to Israel with residues in Syria

# 11 Western South America 0.2%
Origin: Peaks in Peru, Mexico, and North America and declines in Eastern Russia

Here are Ann's migration routes.



You can see an interactive version of Ann's migration routes here. The PDF File with Ann's full GPS Origins report can be seen here.

Ann's migration stories show that her ancestors came from Greece prior to 696 AD, and from Russia prior to 696 AD. Both of Ann's routes converge on the same location in Germany some time between 696 AD and 1935 AD. 

Piya Changmai's GPS Origins results
From the above two results it would appear that this test is not very helpful for people of Northern European ancestry. Let's now have a look at some results for someone with Asian ancestry. Piya Changmai has kindly shared his results with me. According to his family history Piya has 5/8 of his ancestry from Thailand and 3/8 from Southern China. He describes his ancestry as follows:
I have a Chinese paternal great-grandfather, so he contributed 1/8 of my ancestry. I have also a Chinese maternal grandmother, so her contribution is 2/8. Other ancestors are Thai and Laotian ethnics from Thailand. Thai and Laotian are closely related ethnics, like Czech and Slovak. In summary, I have Chinese ancestry 2/8+1/8 = 3/8 and Thailand (Thai and Laotian) ancestry 5/8. Both Chinese ancestors are from Southern part of China, also reflected by Y and mt haplogroups (O2a1a and F4b, respectively).
Piya has also tested at 23andMe. Here are his 23andMe results at the standard setting:


Here are Piya's 23andMe results at the speculative setting:


Piva uploaded his 23andMe (v4) data to GPS Origins. Here are Piya's gene pool results:

# 1 Austronesian Oceania 33.4%
Origin: Peaks in Korea, Chinese (Han), Mynamar, Japan, and Vietnam and declines towards West China and India

# 2 Austronesian Southeast Asia 27.1%
Origin: Peaks in Taiwan and Malay and declines in Thailand, Vietnam, Cambodia, and South China

# 3 Central America 6.4%
Origin: Peaks in Mexico and Central America with residues in Peru

# 4 Sino-Tibetan and Hmongic Southeast Asia 5.8%
Origin: Peaks in East Asia, Central-south China (Lahu, Naxi, Yi) and declines towards India

# 5 Tuva 4.2%
Origin: Peaks in south Siberia (Russians: Tuvinian) and declines in North Mongolia

# 6 Central Southern China: Yunnan and Guangxi 4%
Origin: Peaks in East Asia (East) and Chinese (She, Dai) with residues in Central south China (Han, Miao, Tujia)

# 7 Western Siberia 3.2%
Origin: Peaks in Krasnoyarsk Krai and declines towards east Russia

# 8 Pima County: The Sonora 3.1%
Origin: Peaks in Central-North America and declines towards Greenland and Eskimos

# 9 Southeastern India 2.9%
Origin: Endemic to south eastern india with residues in Pakistan

# 10 Papuan New Guinea 1.8%
Origin: Peaks in Papua New Guinea and declines in Australia

# 11 Bougainville 1.6%
Origin: Peaks in Bougainville and declines in Australia

# 12 Southern France 1.3%
Origin: Peaks in south France and declines in north France, England, Orkney islands, and Scandinavia

# 13 Southwestern India 1.3%
Origin: Endemic to Indian (Pulayar) with residues in India (Paniya, Savara, Bengali, Juang, Savara, Ho, Bonda)

# 14 Northern India 1.1%
Origin: Peaks in North India (Dharkars, Kanjars) and declines in Pakistan

# 15 Western South America 1%
Origin: Peaks in Peru, Mexico, and North America and declines in Eastern Russia

# 16 Northern Mongolia and Eastern Siberia 1%
Origin: Peaks in North Mongolia and declines in Siberia

# 17 Northwestern Africa 0.5%
Origin: Peaks in Algeria and declines in Morocco and Tunisia

# 18 The Southern Levant 0.3%
Origin: This gene pool is localized to Israel with residues in Syria

Here is Piya's migration map.

You can see an interactive version of Piya's migration map here. (His report is under the pseudonym Mee Panda.) A PDF file with Piya's full GPS Origins results is available here.
Both of Piya's migration routes start in the same place in Kyrgyzstan. Piya is told that his ancestors came from Kyrgyzstan prior to 1183 AD. His ancestors on the northern route arrived in northern China between 1183 AD and 1617 AD. Piya's southern migration route ends up in Singapore and arrived there some time between 1150 AD and 1751 AD. 
Ezgi Altinisik's GPS Origins results
The final set of results I'll be looking at are from Ezgi Altinisik. She is from Turkey. Her paternal grandfather was born in Bulgaria and her paternal grandmother was born in Romania but both were Turkish and moved back to Anatolia around 1930. Her maternal grandmother is from Siverek in Turkey. Her maternal grandfather is from Samsun on the north coast of Turkey. As far as she knows, all her maternal ancestors have resided in Turkey for a long time.

Ezgi has also tested at 23andMe. Here are her 23andMe results at the standard level:


Here are her 23andMe results at the speculative level.


Ezgi uploaded her 23andMe data (v4) to GPS Origins. Here are Ezgi's gene pool results:

# 1 Southern France 14.6%
Origin: Peaks in south France and declines in north France, England, Orkney islands, and Scandinavia

# 2 Fennoscandia 14.6%
Origin: Peaks in the Iceland and Norway and declines in Finland, England, and France

# 3 Southeastern India 12.8%
Origin: Endemic to south eastern india with residues in Pakistan

# 4 Western Siberia 10.9%
Origin: Peaks in Krasnoyarsk Krai and declines towards east Russia

# 5 Orkney Islands 9.7%
Origin: Peaks in the Orkney islands and declines in England, France, Germany, Belarus, and Poland

# 6 Tuva 7.9%
Origin: Peaks in south Siberia (Russians: Tuvinian) and declines in North Mongolia

# 7 Sardinia 7.8%
Origin: Peaks in Sardinia and declines in weaker in Italy, Greece, Albania, and The Balkans

# 8 Arabia 5.7%
Origin: Peaks in Saudi Arabia and Yemen and declines in Israel, Jordan, Iraq, and Egypt

# 9 The Southern Levant 5.5%
Origin: This gene pool is localized to Israel with residues in Syria

# 10 Basque Country 3.9%
Origin: Peaks in France and Spain Basque regions and declines in Spain, France, and Germany

# 11 Northern India 3.8%
Origin: Peaks in North India (Dharkars, Kanjars) and declines in Pakistan

# 12 Austronesian Southeast Asia 1.3%
Origin: Peaks in Taiwan and Malay and declines in Thailand, Vietnam, Cambodia, and South China

# 13 Central America 0.8%
Origin: Peaks in Mexico and Central America with residues in Peru

# 14 Western South America 0.8%
Origin: Peaks in Peru, Mexico, and North America and declines in Eastern Russia

Here is Ezgi's migration map.


Ezgi's interactive migration map can be seen here. A PDF file with Ezgi's full GPS Origins results is available here.

The blue migration route shows that Ezgi's ancestors came from Russia prior to 1244 AD. Her ancestors then passed through Turkey on their DNA journey and ended up in Crete some time between 1244 AD and 1557 AD. According to the red migration route Ezgi's ancestors came from Turkey prior to 1037 AD, and arrived in Armenia some time between 1037 AD and 1527 AD.

Discussion
This is only a very small sample of four test results, but if these results are representative it would appear that the GPS Origins test is not very helpful.

The gene pool results are very strange and correlate poorly with the results we might expect for the reported ethnicities. For instance, both North European persons (Ann and I) and the Turkish person (Ezgi) in this small sample have unexpectedly high and very similar percentages of ancestry components from Siberia (18% - 19%) and India (13 - 17%). The model seems to overestimate these components for all West Eurasians. The components from Orkney (9.7% - 11.8%) and Sardinia (7.8%  - 12.4%) are also similar in these three individuals.

The Thai person (Piya) has an unexpectedly high component of around 10% Native American, but only just over 5% from India. Both Ann and I, who have recent all-European ancestry, came out with more than double this Indian component. We would expect much more Indian ancestry in a Thai person as compared to a European person, based on the history of Thailand and recent genetic research (Mörseburg et al 2016).

The maps do not always correspond with the countries in the gene pools. Fennoscandia is supposed to encompass Norway, Sweden, Finland, Denmark and "a part of Russia known as the Kola Peninsula". However, on the map it covers Iceland, Norway, Finland, Britain and France but excludes Sweden and Denmark. The map for the Western Siberian gene pool covers the whole of Russia. The Austronesian Oceania gene pool seems to be misnamed given its geographical distribution and probably should be renamed as Northeast Asia. Only Korea, Japan, Vietnam and Myanmar (Burma) are highlighted on the map yet these countries are not in Oceania and the people do not speak any Austronesian languages. China is missing from the map, although the text states that the component peaks in Han Chinese, among other populations. Pavel Flegontov, a geneticist at the University of Ostrava in the Czech Republic, tells me that in all other ADMIXTURE analyses he's seen, this Northeast Asian component has a much wider distribution in Siberia and much lower percentages in Myanmar and Vietnam. He suggests that if the components really have the distributions shown on the maps, that clearly demonstrates that GPS Origins reports artefacts of an overly complex admixture model with 36 components.

According to the legend on the migration maps "Although the Migration Patterns represent your Maternal and Paternal DNA route, we cannot differentiate which route is specifically your parents’ individual route at this time." However, the GPS Origins test does not phase the genetic data (phasing is the process of sorting the alleles onto the maternal and paternal chromosomes) so it is not clear how the paternal and maternal routes are defined in the first place. If an individual has reported ancestry from predominantly one region then surely we would expect the migration routes to be broadly similar for both the maternal and paternal lines.

The co-ordinates are supposed to represent places where "significant genetic mixture took place at the gene pool level", but the proposed migration routes are at times bizarre and do not correspond with historical records. For example, there are no large-scale historical migrations from Croatia to Ireland, from Kyrgyzstan to Singapore, or from Russia to Crete. The precision of the geographical co-ordinates down to three decimal places gives a false sense of accuracy, but the methodology is opaque.

The concept of the dual migration pathways is difficult to understand. If we go back one thousand years, in theory we all have over 8,000 million genealogical ancestors. It is inconceivable that half of these ancestors would all go off on their travels in one direction and the other half would go in a different direction.

The algorithms for the GPS Origins test have been developed by scientists at the University of Sheffield led by Eran Elhaik. However, as mentioned in a previous blog post, the underlying research by Elhaik et al (Nature Communications, 2014) on which this test is based has proved to be controversial. The results have been called into question by Flegontov et al (2016) who conclude that GPS is a "genetic provenancing approach" which is "at best only suited to inferring the most likely geographic location of modern and relatively unadmixed genomes, and tells nothing of population history and origin".

Since then a further analysis has been published by Andrew Millard, an archaeological scientist at the University of Durham. He was unable to reproduce the mathematical calculations and concluded:
...the mathematical methods described are incoherent, the supplementary data is not that used to create the figures or equations in the paper, and the supplementary code does not implement the methods described. The paper is methodologically unsound and not reproducible.
There have also been additional concerns about an undeclared conflict of interest on the part of Eran Elhaik and Tatiana Tatarinova, the lead authors of the GPS paper in Nature Communications. This omission has now been partially rectified, somewhat belatedly, with the publication on 31 October 2016 of a corrigendum. However, the new conflict of interest statement does not mention the relationship that the two authors already appear to have had in place with Prosapia Genetics prior to publication. The Prosapia Genetics domain name was originally registered to Tatarinova. On the very day that the paper was released Prosapia started selling a commercial GPS test. In a video published to accompany the press release issued by the University of Sheffield Eran Elhaik suggested that people should upload their genotype data to "our website" to find out their geographical homeland. The Prosapia URL (www.prosapiagenetics.com) was included at the end of this video. The video has since been edited to remove the URL but the original unedited video can be viewed on the Daily Mail website. The original Prosapia GPS test no longer seems to be available and the website now returns a warning message. An early version of the website dating from 3 May 2014, a few days after the publication of the paper, can be found in the Internet Archive.

Conclusion
The GPS Origins test does not provide meaningful results and has no practical application for the genetic genealogist. If you wish to use your raw autosomal DNA data from one of the commercial testing companies to get an alternative admixture analysis I recommend using one of the free services such as DNA.Land or GedMatch instead.

Update 1st December 2016
Eran Elhaik has published a response to this article GPS Origins results for four participants on his Khazar DNA Project blog.

Acknowledgements
Thanks to Ann Turner, Piya Changmai and Ezgi Altinisik for sharing their results. Thanks to Pavel Flegontov and Ann Turner for helpful comments on early drafts of this blog post.

 © 2016 Debbie Kennett

Wednesday, 23 November 2016

Exome testing combined with a Geno 2.0 Next Generation test from Helix

Helix, a new genetics start up company in the US, has just announced the launch of the first product on its new pay-as-you-go sequencing platform –  a National Geographic Geno 2.0 Next Generation test. When you order the test the company will sequence your exome. That's the part of your genome which includes all the genes. Your DNA is then stored by the company and you can order additional DNA products as and when they become available. These will include reports on nutrition, health and fitness produced by other partner companies. Presumably Helix hopes that customers will be encouraged to pay for enough add-on products to recoup the costs of the exome sequencing. At present the Helix test is only available to US residents.
Helix is using a technology called Exome+ which they describe as follows:
The “exome” is comprised of all the DNA that encodes for protein—and because proteins are the machinery of your cells, the exome represents some of the most important and well-studied pieces of your DNA. But the exome is only part of your DNA story. The genetic experts at Helix have identified other important information-rich areas to sequence (hence, Exome+).
However, rather than using all the data from the exome, the Helix Geno Next Generation test is done using just a subset of these SNPs. Helix explain that they "provide National Geographic with more than 200,000 markers from your autosomal chromosomes, the Y-chromosome, and mitochondrial DNA". The breakdown of the markers tested is provided on the product page:
  • Maternal line: over 3,000 markers on mitochondrial DNA
  • Paternal line (for males): over 10,000 markers on the Y chromosome
  • Hominin and regional: over 200,000 markers across the entire genome
It is not clear how many of the SNPs used by Helix overlap with the SNPs used on the current Geno 2.0 NextGen test from the Genographic Project. The chip used for the standard Geno 2.0 NextGen test has around 700,000 autosomal SNPs, 20,000 Y-SNPs and 4000 mtDNA SNPs. The new Helix test therefore provides less coverage than the existing test. This is presumably because there are fewer ancestry informative markers in the exome.

Customers in the US who wish to order a Genographic test now have no other option but to buy the Geno Next Generation Helix Kit. The higher-resolution Geno 2.0 Next Gen test is still available for customers outside the US. Presumably the company will wait and see how the test fares in the US before deciding whether or not to roll it out to the rest of the world.

Unfortunately because the new Helix test covers so few markers it will no longer be possible for US customers to transfer their results to the Family Tree DNA Family Finder database to search for genealogical matches. They will also not be able to upload their results to the free third-party websites such as GedMatch and DNA.Land.

At the moment Helix customers cannot access their raw data. The website says that they are actively working on a feature to allow customers to "purchase access to the raw data set containing your complete DNA sequence data in 2017". It remains to be seen how much this will cost, but if someone is interested in having their exome sequenced then the Helix test might turn out to be a cost-effective way of doing so.

The concept of pay as you go sequencing is interesting but I would have thought it would make sense to wait until the full information is available from whole genome sequencing rather than ordering an exome sequencing test. In the current Full Genomes Corporation sale it is already possible to buy 30x whole genome sequencing for $1250, and 15x whole genome sequencing for $795. The Full Genomes test includes a full interpretation of the Y-chromosome data. The raw autosomal data can be uploaded to Promethease for a small fee of $5 for health reports. Veritas Genetics offers a 30x whole genome sequencing test for $999 which includes health and trait reports. No Y-chromosome interpretation is provided though this can be purchased though YFull for $49.  However, the Veritas test needs to be authorised by a doctor. No doubt the cost of whole genome sequencing will come down in price in the next few years to a more affordable level.

Further reading
With thanks to Gerard Corcoran, James Kane, David Mittelman and Ann Turner. 

Thursday, 17 November 2016

The Oxford Dictionary of Family Names in Britain and Ireland


Update 20 November 2016. The publishers are providing free access to the dictionary until the end of November. To get the log in details see the press release from the UWE (you'll need to scroll right down to the bottom of the page).


The long-awaited Oxford Dictionary of Family Names in Britain and Ireland has finally been published. This dictionary is the fruit of six years' research by a team of academics at the University of the West of England, and is part of a project originally known as Family Names in the UK (FaNUK). It will be a valuable resource for information on the origins, history and geographical distribution of surnames in Britain and Ireland. Over 50,000 surnames are included in the database. The dictionary provides information on the current distribution of a surname in Britain and Ireland, the main location of the surname in Great Britain in 1881 and the main Irish location between 1847 and 1864. In the online version of the dictionary a map generated from Steve Archer's Surname Atlas CD showing the distribution of the surname in 1881 is also provided. Variant spellings are provided, and early bearers of the surname are listed.

The dictionary is available in print for the princely sum of £400. At that price it is going to be beyond the reach of the average family historian but it should be possible to find printed copies in your nearest reference library. The dictionary is also available as an online database via Oxford Reference. This database is accessible with some library tickets and via institutional access. If your library does not subscribe then I would encourage you to write to them and ask if they can take out a subscription. I can't currently access the database with any of my library cards or via my UCL account, but UCL have already told me that they are investigating access so I hope to be able to log in soon.

The FaNUK team invited members of the Guild of One-Name Studies to complete a questionnaire providing information about their registered surnames. I contributed information on the surnames Cruse, Cruwys and variants. I  was sent a draft of the entry for my surnames back in 2014 and provided further input on the draft, but I haven't yet seen the final entry so I shall look forward to seeing how it has turned out. I was very pleased that the dictionary cited my profile page on the Guild of One-Name Studies website as one of the references they'd used.

There were originally plans to incorporate DNA evidence into the surname entries as I reported back in 2011, but that proposal did not come to anything.

You can learn more about the dictionary in these interviews with Professor Patrick Hanks and Dr Harry Parkin on YouTube as well as catching a few tantalising glimpses of some pages from the dictionary.



Further reading 

Monday, 14 November 2016

News from the FTDNA conference and the start of the FTDNA sale

The annual Family Tree DNA International Conference on Genetic Genealogy took place over the weekend in Houston, Texas. Jennifer Zinck has provided two very detailed write-ups from the conference which are well worth reading in their entirety and will give an idea of what we might expect from FTDNA in the coming months:
You can see some pictures and tweets from the conference by searching on Twitter using the hashtags #FTDNA2016 and #FTDNAconf2016.

If there are further reports from the conference I will post the links here.

Ancient Origins report
A new Ancient Origins report was announced at the conference and this feature is now live. Log into your Family Finder account to get your results. Here is my report.


There is currently little information provided about the populations used to inform these reports but there is a brief FAQ section in the FTDNA Learning Center. This is probably not a report to be taken too seriously but is a little bit of fun.

FTDNA sale
At the end of the conference FTDNA announced the start of their sale. The Family Finder test is on offer for just $59 (£47), its lowest ever price. There are reductions on all the other tests as well as on some upgrades. Click here to see a full list of all the tests available and all the other sale prices.

The BigY test is included in the sale and is on offer for $525 but is only available to existing customers who have already ordered a Y-STR test.

There are also lots of coupons being offered to existing customers which can provide additional reductions on top of the sale prices. The deals include offers for up to $100 off the Big Y test, $60 off the 111-marker Y-DNA test, $40 off the 67-marker Y-DNA test, $40 off the full mitochondrial sequence test, as well as smaller reductions on other tests and upgrades.

If you're looking for an extra discount look out for offers in the various genetic genealogy mailing lists and Facebook groups. Many groups, including some of the haplogroup projects, are maintaining spreadsheets to collate all the spare coupons so if you want to order a test check first to see what is available. The coupons will be issued every week on a Monday until the end of the year.